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Exact Passive-Aggressive Algorithms for Ordinal
Regression Using Interval Labels

Naresh Manwani and Mohit Chandra

Abstract— In this article, we propose exact passive-aggressive
(PA) online algorithms for ordinal regression. The proposed
algorithms can be used even when we have interval labels
instead of actual labels for example. The proposed algorithms
solve a convex optimization problem at every trial. We find an
exact solution to those optimization problems to determine the
updated parameters. We propose a support class algorithm (SCA)
that finds the active constraints using the Karush–Kuhn–Tucker
(KKT) conditions of the optimization problems. These active con-
straints form a support set, which determines the set of thresholds
that need to be updated. We derive update rules for PA, PA-
I, and PA-II. We show that the proposed algorithms maintain
the ordering of the thresholds after every trial. We provide the
mistake bounds of the proposed algorithms in both ideal and
general settings. We also show experimentally that the proposed
algorithms successfully learn accurate classifiers using interval
labels as well as exact labels. The proposed algorithms also do
well compared to other approaches.

Index Terms— Interval labels, online learning, ordinal regres-
sion, passive-aggressive (PA).

I. INTRODUCTION

ORDINAL regression is used to learn a model, which can
predict labels from a discrete but an ordered set. Ordinal

regression is frequently used in settings where it is natural
to rank instances. For example, the labels (“do-not-bother”
≺ “only-if-you-must” ≺ “good” ≺ “very-good” ≺ “run-to-
see”) used in movie ratings [5]. Product ratings in online
retail stores (e.g., Amazon, eBay, etc.), age of a person from
its face image, etc. are other use cases of ordinal regression.
Ordinal regression has been successfully used in a wide variety
of applications ranging from collaborative filtering [20] to
ecology [10] to detect the severity of Alzheimer disease [8]
and many more.

An ordinal regression requires a linear (nonlinear) function
and a set of K − 1 thresholds (K be the number of classes).
Each threshold corresponds to a class. Thus, the thresholds
should have the same order as their corresponding classes. The
rank (class) of an example is predicted based on the relative
position of the function value concerning different thresholds.
Ordinal regression is different from multiclass classification in
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the sense that there is a natural ordering among the class labels.
It is also different from regression as the target values can take
only discrete values. Large margin formulations for ordinal
regression are proposed in [3] and [23]. Ordering of thresholds
can be maintained implicitly or explicitly. In explicit methods
[3], [23], explicit ordering constraint is posed in the formula-
tion. On the other hand, implicit methods [3], [14] capture the
ordering by posing separability conditions between every pair
of classes. Note that ordinal regression problem is different
from learning to rank problem [2], [12], [13], [24]. In learning
to rank, the goal is to learn ordering among multiple target
instances for a given an example (optimizing average precision
and normalized discounted cumulative gain).

An incremental algorithm for ordinal regression is proposed
in [9]. In the incremental algorithms, given initial training data,
the optimal classifier is learned. Then, the algorithm observes
a new example. The incremental algorithm adds this new
example in the training set and finds an efficient way to learn
the new classifier using bigger training set and old classifier.

In the case of big data, they require a huge amount of com-
putation time and memory to solve the optimization problem.
In contrast, online learning updates its hypothesis based on a
single example at every instant. Thus, online algorithms are
even faster than the incremental algorithms. Perceptron-based
algorithm for online ordinal regression is proposed in [5]
and [11]. Passive-aggressive (PA) [4] is another principled
method of learning classifiers in online fashion. The updates
made by PA are more aggressive to make the loss incurred
on the current example zero. Crammer et al. [4] propose two
more variants of PA (namely, PA-I and PA-II). This approach
can be applied to learning multi-class classification, regression,
multitask learning, and so on. A variant of PA learning for the
multi-class classifier is proposed in [16].

PA algorithms for ordinal regression have not been well
addressed in the literature. Moreover, in the above approaches,
it is assumed that the training data contain exact labels for each
observation. However, in many situations, we get interval labels
instead of the precise label. For example, while predicting
product ratings, we can get an entire range of scores (e.g., 1–3
and 4–7) from different customers. Similarly, while learning for
predicting human age, we can get a variety of values around the
actual age of the person (e.g., 0–9, 10–19, . . ., 90–99). A large
margin batch algorithm is proposed in [1] using interval labels.
In [15], perceptron-based approach is proposed for learning
ordinal regression classifier using interval labels.

In this article, we propose PA algorithms for ordinal regres-
sion. These algorithms not only utilize the ordering of the class
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labels but also are generic enough to accept both exact as well
as interval labels in the training data. To the best of authors’
knowledge, this is the first work in that direction. Our key
contributions are as follows.

A. Main Contributions

1) We derive update rules for all the variants of the PA
approach (PA, PA-I, and PA-II) for ordinal regression.
At trial t , PA algorithms solve a convex optimization
problem. We find the exact solution to these optimization
problems. We propose support class algorithm (SCA)
which, at any trial, finds active constraints in the
Karush–Kuhn–Tucker (KKT) optimality conditions to
find the support class set. Support class set describes
the thresholds that need to be updated in addition to the
weight vector. We show that SCA correctly finds the
support classes.

2) We show that the proposed PA algorithms implicitly
maintain the ordering of the thresholds after every trial.

3) We provide the mistake bounds for the proposed algo-
rithms in both general and ideal cases.

4) We perform extensive simulations of the proposed algo-
rithms on various data sets and show their effectiveness
by comparing the results with different other algorithms.

This article is organized as follows. In Section II, we discuss
a generic framework ordinal regression using interval (exact)
labels. In Section III, we derive the update rules for PA,
PA-I, and PA-II. The order preservation guarantees of the
proposed algorithms are discussed in Section IV. In Section V,
we discuss the mistake bounds. Experiments are presented in
Section VI. We conclude this article with some remarks in
Section VII.

II. ORDINAL REGRESSION USING

INTERVAL (EXACT) LABELS

Let X ⊂ R
d be the instance space and Y = {1, . . . , K }

be the label space. For every instance x ∈ X , an interval
label [yl, yr ] ∈ Y × Y is given. The exact (actual) label
y lie in the interval label. When yl = yr for all the
examples, it becomes the exact label scenario. Let S =
{(x1, y1

l , y1
r ), . . . , (xT , yT

l , yT
r )} be the training set. Ordinal

regression using a function f : X → R and thresholds
θ1 ≤ · · · ≤ θK−1 is defined as

h(x) = min
i∈[K ] {i : f (x)− θi < 0} (1)

where θK = ∞ and [K ] = {1, . . . , K }. Let f (x) = w ·
x. We can use the kernel trick to generalize for nonlin-
ear functions. We use mean absolute error (MAE) [1] to
capture the discrepancy between the interval label and the
predicted label

LMAE( f (x), θ , yl , yr ) =
yl−1∑
i=1

I{ f (x)<θi } +
K−1∑
i=yr

I{ f (x)≥θi}

= (yl − h(x))I{h(x)<yl} + (h(x)− yr )I{h(x)>yr }
where θ = {θ1, . . . , θK }. LMAE takes value 0 whenever
θyl ≤ f (x) < θyr . When yl = yr = y (exact label case),

LMAE = |y − h(x)|. Note that LMAE is a discontinuous loss.
A convex surrogate of this loss function is as follows [1]:1

LIMC( f (x), θ , yl, yr )

=
yl−1∑
i=1

li +
K−1∑
i=yr

li

=
yl−1∑
i=1

[1− f (x)+ θi ]+ +
K−1∑
i=yr

[1+ f (x)− θi ]+ (2)

where θ = [θ1 . . . θK−1] and [z]+ = max(0, z). When
yl = yr , then LIMC leads to the implicit formulation described
in [3]. LIMC is shown to be the Fisher consistent [18].

III. EXACT PASSIVE-AGGRESSIVE ALGORITHMS FOR

ORDINAL REGRESSION

PA [4] is a principled approach for supervised learning in
online fashion. Here, we develop PA algorithms for ordinal
regression, which can learn even with interval labels. The
proposed method is based on the interval insensitive loss
described in (2). We derive the update equations for PA, PA-I,
and PA-II separately.

A. PA Algorithm

Let xt be the example being observed at trial t . Let wt ∈ R
d

and θ ∈ R
K−1 be the parameters of the ordinal regression at

time t . We now use these parameters to predict the label. Then,
we observe the actual label(s). PA algorithm finds wt+1 and
θ t+1, which are closest to wt and θ t such that the loss LIMC (2)
becomes zero for the current example. Thus,

wt+1, θ t+1 = arg min
w,θ

1

2

w − wt
2 + 
θ − θ t
2

s.t.

{
w · xt − θi ≥ 1, i = 1, . . . , yt

l − 1

w · xt − θi ≤ −1, i = yt
r , . . . , K − 1.

Geometrically, (wt+1, θ t+1) are found by projecting (wt , θ t )
onto the half-space of vectors, which attain zero value of LIMC
on xt . The algorithm is passive whenever LIMC = 0 (that is,
wt+1 and θ t+1 are same as wt and θ t ). In contrast, when
LIMC > 0, the algorithm aggressively forces wt+1 and θ t+1

to be such that LIMC(wt+1.xt , θ t+1, yt
l , yt

r ) = 0. The KKT
optimality conditions are as follows:

w = wt +
⎛
⎝yt

l−1∑
i=1

ιt
i −

K−1∑
i=yt

r

μt
i

⎞
⎠ xt

ιi ≥ 0; θi = θ t
i − ιt

i ; i = 1 . . . yt
l − 1

μi ≥ 0; θi = θ t
i + μt

i , i = yt
r . . . K − 1

1+ θi − w · xt ≤ 0; ιi (1+ θi − w · xt ) = 0

i = 1 . . . yt
l − 1

1+ w · xt − θi ≤ 0; μi (1+ w · xt − θi ) = 0

i = yt
r . . . K − 1

1Note that [1 − f (x) + θi ]+ is convex loss (hinge loss) for each i ∈
{1, . . . , yt

l − 1}. Thus, sum of these losses is also convex. Similarly, sum
of [1 + f (x) − θi ]+ is also convex. Hence, LIMC is convex. It is also easy
to verify that LIMC always upper bounds LMAE.
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where ιi ≥ 0 i ∈ [yt
l − 1] and μi ≥ 0, i = yt

r , . . . , K − 1
are Lagrange multipliers. Let St

l = {1 ≤ i ≤ yt
l − 1|ιt

i > 0}
be the left support set and St

r = {yt
r ≤ i ≤ K − 1|μi > 0}

be the right support set. Thus, optimal w can be rewritten
as w = wt + at xt where at = ∑i∈St

l
ιt

i −
∑

i∈St
r
μt

i . Also,
w · xt − θi = 1, i ∈ St

l and w · xt − θi = −1, i ∈ St
r . Thus,

we get ιi = 1−wt .xt − θ t
i −at
xt
2 = lt

i −at
xt
2, ∀i ∈ St
l

and μi = 1− θ t
i + wt .xt + at
xt
2 = lt

i + at
xt
2, ∀i ∈ St
r .

Putting the values of ιi and μi in the expression of at , we get,
at = ((

∑
i∈St

l
l t
i −
∑

i∈St
r

lt
i )/(1+ (|St

l | + |St
r |)
xt
2)). Note

that PA updates assume that at every trial t , sets St
l and St

r
are known. The complete description of the PA algorithm is
as given in Algorithm 1.

Algorithm 1 PA Algorithm
Input Training set S
Initialize w0 and θ0

for t = 1, · · · , T do
xt ← randomly sample an instance from S
Predict: ŷt = wt .xt

Observe yt
l , yt

r
lt
i = max(0, 1 + θ t

i − wt .xt ), i = 1 . . . yt
l − 1

lt
i = max(0, 1 + wt .xt − θ t

i ), i = yt
r . . . K − 1

St
l , St

r = SCA(yt
l ; yt

r; xt ; lt
i , i ∈ [K − 1])

Update:

wt+1 = wt + at xt

θ t+1
i = θ t

i − lt
i + 
xt
2at , ∀i ∈ St

l

θ t+1
i = θ t

i + lt
i + 
xt
2at , ∀i ∈ St

r

end for

Determining Support Sets St
l and St

r : LIMC decreases as
we move away from the interval label [yt

l , yt
r ]. We initialize

with St
l = {yt

l − 1} and St
r = {yt

r }. We can easily verify
that with this initialization, ιt

yt
l−1

, μt
yt

r
> 0. We start with

threshold θ t
yt

l−2
and find corresponding Lagrange multiplier

ιt
yt

l−2
. If ιt

yt
l−2

> 0, then we add yt
l − 2 to St

l . Otherwise,

we check if μt
yt

r+1 is positive. If so, we add yt
r + 1 to St

r .
We repeatedly check this for all the thresholds. The detailed
approach for finding support sets is described in Algorithm 2.

The following lemma shows the correctness of the SCA.
Lemma 1: Assume that St

l = φ. Let, k /∈ St
l and k+1 ∈ St

l .
Then, k � /∈ St

l , ∀k � < k.
Proof: We are given that k /∈ St

l . Thus,

ιt
k = lt

k −

xt
2(lt

k +
∑

j∈St
l
l t

j −
∑

j∈St
r

lt
j

)
1+ 
xt
2(∣∣St

l

∣∣+ 1+ ∣∣St
r

∣∣) ≤ 0

∀k � < k, we know lt
k� ≤ lt

k . Now, if we try to add k � in St
l ,

then

ιt
k� = lt

k� −

xt
2(lt

k� +
∑

j∈St
l
l t

j −
∑

j∈St
r

lt
j

)
1+ 
xt
2(1+ |St

l | + |St
r |)

≤ lt
k

(
1+ 
xt
2(|St

l | + |St
r |)
)

1+ 
xt
2(1+ |St
l | + |St

r |)

−

xt
2(∑ j∈St

l
l t

j −
∑

j∈St
r

lt
j

)
1+ 
xt
2(1+ |St

l | + |St
r |)

Algorithm 2 SCA

Input: yt
l ; yt

r ; xt ; lt
i , i ∈ [K − 1]

Initialize: St
l = {yt

l − 1}, St
r = {yt

r}, flag = 1, p = yt
l − 2, q

= yt
r + 1

while flag = 1 do
if p > 0 then

if lt
p −


xt
2(lt
p+
∑

j∈St
l

lt
j−
∑

j∈St
r

lt
j )

1+
xt
2(1+|St
l |+|St

r |) > 0 then

St
l = St

l ∪ {p}; p = p − 1; flag = 1
else

flag=0
end if

end if
if q < K then

if lt
q +


xt
2(∑ j∈St
l

lt
j−lt

q−
∑

j∈St
r

lt
j )

1+
xt
2(1+|St
r |+|St

l |) > 0 then

St
r = St

r ∪ {q}; q = q + 1; flag = 1
else

flag=0
end if

end if
end while

= lt
k −

xt
2(lt

k +
∑

j∈St
l
l t

j −
∑

j∈St
r

lt
j

)
1+ 
xt
2(1+ |St

l | + |St
r |)

= ιk ≤ 0.

Thus, k � /∈ St
l .

Thus, if a threshold does not belong to the left support
class St

l then all the threshold on its left side also do not
belong to St

l . If we start adding the classes in the support class
set in decreasing order of respective losses, then this would
ensure that we end up with only those classes which have
positive Lagrange multiplier. Similarly, it can be shown that
if k− 1 ∈ St

r and k /∈ St
r , then k � /∈ St

r , ∀k � > k, which means
if a threshold does not belong the right support class St

r , then
all the threshold on its right side also do not belong to St

r .

B. PA-I

PA-I finds new parameters by solving the following opti-
mization problem:

arg min
w,θ

1

2

w−wt
2 + 1

2

θ−θ t
2+C

⎛
⎝yt

l−1∑
i=1

ξi+
K−1∑

yt
r

ξi

⎞
⎠

s.t.

{
w.xt − θi ≥ 1− ξi ; ξi ≥ 0, i = 1, . . . , yt

l − 1

w.xt − θi ≤ −1+ ξi ; ξi ≥ 0, i = yt
r , . . . , K − 1

where C is the aggressiveness parameter. We skip the deriva-
tion of PA-I updates as it follows the same steps used in case
of PA. PA-I updates the parameters as follows:

w = wt +
⎛
⎝∑

i∈St
l

ιi −
∑
i∈St

r

μi

⎞
⎠ xt

ιi = min(C, lt
i − at
xt
2), i ∈ St

l

μi = min(C, lt
i + at
xt
2), i ∈ St

r

where St
l = {1 ≤ i ≤ yt

l − 1 | ιi > 0}, St
r = {yt

r ≤ i ≤ K −
1 | μi > 0} and at =∑i∈St

l
ιt

i −
∑

i∈St
r
μt

i . PA-I works same
as PA except that it uses a different approach to determine the
support sets St

l and St
r . We use an iterative approach to find
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the support sets. We first find the values of all ιt
i and μt

i and
then compute at . We repeat it until all the values get converge.
Then, we include i in St

l or St
r based on whether ιi > 0 or

μi > 0. SCA-I for PA-I is discussed in Algorithm 3.

Algorithm 3 SCA-I

Input: yt
l ; yt

r ; xt and lt
i , i ∈ [K − 1]

Initialize: St
l = {yt

l − 1}, St
r = {yt

r }, p = yt
l − 2,

q = yt
r + 1

while ι1
i , . . . , ι

t
yt

l−1
, μt

yt
r
, . . . , μt

K−1 do not converge do
for i = p, · · · , 1 do

if min(C, lt
i − at
xt
2) > 0 then

St
l = St

l ∪ {i}
else

if i ∈ St
l then

St
l = St

l − {i} ; ιt
i = 0

end if
end if

end for
for i = q, · · · , K − 1 do

if min(C, lt
i + at
xt
2) > 0 then

St
r = St

r ∪ {i}
else

if i ∈ St
r then

St
r = St

r − {i} ; μt
i = 0

end if
end if

end for
end while

C. PA-II

PA-II finds the new parameters by minimizing the following
objective function:
wt+1, θ t+1 = arg min

w,θ

1

2

w − wt
2 + 1

2

θ − θ t
2

+C

⎛
⎝yt

l−1∑
i=1

ξ2
i +

K−1∑
i=yt

r

ξ2
i

⎞
⎠

s.t.

{
w.xt − θi ≥ 1− ξi , i = 1, . . . , yt

l − 1

w.xt − θi ≤ −1+ξi , i = yt
r , . . . , K−1.

The PA-II update equations are as follows:
wt+1 = wt + atxt

θ t+1
i = θ t

i − ιt
i ∀i ∈ St

l

θ t+1
i = θ t

i + μt
i ∀i ∈ St

r

where ιt
i = ((lt

i − at
xt
2)/(1+ (1/2C))), μt
i =

((lt
i + at
xt )
2)/(1+ (1/2C))), and at = ((

∑
i∈St

l
l t
i−∑

i∈St
r

lt
i )/(1 + (1/2C)+ 
xt
2{|St

l | + |St
r |})). Thus, a class

i ∈ {1, . . . , yt
l −1} lies in the left support set St

l if ιt
i > 0, and

hence, lt
i − at
xt
2 > 0. Similarly, a class i ∈ {yt

r , . . . K − 1}
lies in the right support set St

r if μt
i > 0, and hence,

lt
i + at
xt
2 > 0. SCA-II described in Algorithm 4 provides

a detailed description of selecting St
l and St

r .

Algorithm 4 SCA-II

Input: yt
l ; yt

r ; xt ; lt
i , i ∈ [K − 1]

Initialize: St
l = {yt

l − 1}, St
r = {yt

r}, flag = 1, p = yt
l − 2, q

= yt
r + 1

while flag = 1 do
if p > 0 then

if lt
p − ((
xt
2

(∑
i∈St

l
l t
i −
∑

i∈St
r

lt
i

)
)/((1 + (1/2C)+


xt
2{|St
l | + |St

r |} > 0)) then
St

l = St
l ∪ {p}; p = p − 1; flag = 1

else
flag=0

end if
end if
if q < K then

if lt
q + ((
xt
2

(∑
i∈St

l
l t
i −
∑

i∈St
r

lt
i

)
))/((1 + 1

2C+

xt
2{|St

l | + |St
r |})) > 0 then

St
r = St

r ∪ {q}; q = q + 1; flag = 1
else

flag=0
end if

end if
end while

IV. CORRECTNESS OF PA ALGORITHMS

Now, we will show that our approach inherently maintains
the ordering of thresholds in each iteration.

Theorem 2 (Order Preservation of Thresholds Using PA
Algorithm): Let θ t

1 ≤ · · · ≤ θ t
K−1 be the thresholds at trial

t . Let θ t+1
1 , . . . , θ t+1

K−1 be the updated thresholds using PA.
Then, θ t+1

1 ≤ · · · ≤ θ t+1
K−1.

Proof: We need to analyse the following different cases.

1) We know that θ t+1
k = θ t

k, k = yt
l . . . yt

r − 1. Thus,
θ t+1

yt
l
≤ . . . ≤ θ t+1

yt
r−1.

2) ∀k ∈ St
l , we see that

θ t+1
k = −1+ w · x +


xt
2(∑i∈St
l

l t
i −
∑

i∈St
r

lt
i

)
1+ 
xt
2(∣∣St

l | + |St
r

∣∣) .

Thus, all the thresholds in the set St
l are mapped to the

same value, and hence, the ordering is preserved.
3) ∀k ∈ St

r , we see that

θ t+1
k = 1+ w · x +


xt
2(∑i∈St
l

l t
i −
∑

i∈St
r

lt
i

)
1+ 
xt
2(∣∣St

l

∣∣+ ∣∣St
r

∣∣) .

All the thresholds in the set St
r are mapped to the same

value and hence the ordering is preserved.
4) Let k, k + 1 ∈ [yt

l − 1]�St
l where � is symmet-

ric difference between sets. Then, θ t+1
k+1 − θ t+1

k =
θ t

k+1 − θ t
k ≥ 0.

5) Let k ∈ [yt
l − 1]�St

l and k + 1 ∈ St
l . Then, using

Theorem 1, we get

lt
k ≤

xt
2(lt

k +
∑

i∈St
l

l t
i −
∑

i∈St
r

lt
i

)
1+ 
xt
2(∣∣St

l

∣∣+ 1+ ∣∣St
r

∣∣)
≤

xt
2(∑i∈St

l
l t
i −
∑

i∈St
r

lt
i

)
1+ 
xt
2(∣∣St

l

∣∣+ ∣∣St
r

∣∣) = at
xt
2
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θ t+1
k+1−θ t+1

k = θ t
k+1−θ t

k− lt
k−at
xt
2 = θ t

k+1−(lt
k+1−

θ t
k + θ t

k+1)− a2
xt
2 − θ t
k = −lt

k+1 − at
xt
2 ≥ 0.
6) Let k, k + 1 ∈ {yt

r , . . . , K − 1}�St
r , then θ t+1

k+1 − θ t+1
k =

θ t
k+1 − θ t

k ≥ 0.
7) Let k + 1 ∈ {yt

r , . . . , K − 1}�St
r and k ∈ St

r . Then,

lt
k+1 ≤ −


xt
2(∑i∈St
l

l t
i −
∑

i∈St
r

lt
i − lt

k+1

)
1+ 
xt
2(∣∣St

l

∣∣+ 1+ ∣∣St
r

∣∣)
≤ −

xt
2(∑i∈St

l
l t
i −
∑

i∈St
r

lt
i

)
1+ 
xt
2(∣∣St

l

∣∣+ ∣∣St
r

∣∣) = −at
xt
2

θ t+1
k+1−θ t+1

k = θ t
k+1−θ t

k− lt
k−at
xt
2 = θ t

k+1−(lt
k+1−

θ t
k + θ t

k+1)− a2
xt
2 − θ t
k = −lt

k+1 − at
xt
2 ≥ 0.
This completes the proof.

Theorem 3 (Order Preservation of Thresholds Using PA-I):
Let θ t

1 ≤ · · · ≤ θ t
K−1 be the thresholds at trial t . Let

θ t+1
1 , . . . , θ t+1

K−1 be the updated thresholds using PA-I. Then,
θ t+1

1 ≤ · · · ≤ θ t+1
K−1.

Proof: The proof follows in the same manner as PA
algorithm. We only consider, here, the following two cases.

1) k + 1 ∈ St
l and k ∈ [yt

l − 1]�St
l . Thus, ιt

k < 0,
which means lt

k − at
xt
2 < 0 as C > 0. Also,
ιt

k+1 = min(C, lt
k+1 − at
xt
2) > 0. When ιt

k+1 =
lt
k+1 − at |xt
2, we see that

θ t+1
k+1 − θ t+1

k = θ t
k+1 − lt

k+1 + at |xt
2 − θ t
k

= θk+1−
(
lt
k − θ t

k + θ t
k+1

)+ at |xt
2−θ t
k

= −lt
k + at |xt
2 ≥ 0.

When ιt
k+1 = C (C ≤ lt

k+1 − at
xt
2), we have θ t+1
k+1−

θ t+1
k = θ t

k+1−C− θ t
k ≥ θ t

k+1− lt
k+1+at
xt
2− θ t

k ≥ 0.
2) Let k, k + 1 ∈ St

l . Thus, θ t+1
k+1 − θ t+1

k = θ t
k+1 − θ t

k −
ιt

k+1 + ιt
k . There can be four different cases as follows.

a) When ιt
k+1 = ιt

k = C . Thus, θ t+1
k+1−θ t+1

k = θ t
k+1−

θ t
k ≥ 0. Similarly, is the case when ιt

k = C , then
ιt

k+1 = C due to the fact that lt
k+1 ≥ lt

k .
b) Let ιt

k = lt
k − at
xt
2 and ιt

k+1 = lt
k+1 − at
xt
2.

Thus, θ t+1
k+1 = θ t+1

k = −1+ wt · xt + at
xt
2.
c) Let ιt

k = lt
k − at
xt
2 and ιt

k+1 = C . We see that
θ t+1

k = −1+wt · xt + at
xt
2 and θ t+1
k+1 = θ t

k+1 −
C ≥ θ t

k+1−lt
k+1+at
xt
2 = −1+wt .xt+at
xt
2.

Thus, θ t+1
k+1 − θ t+1

k ≥ 0.
Similar arguments can be given for the right support class St

r ,
and hence, we skip the proof for it.

Theorem 4 (Order Preservation of Thresholds Using
PA-II): Let θ t

1 ≤ · · · ≤ θ t
K−1 be the thresholds at trial t . Let

θ t+1
1 , . . . , θ t

K−1 be the updated thresholds using PA-II. Then,
θ t+1

1 ≤ · · · ≤ θ t+1
K−1.

The order preservation proof for PA-II works similarly as
PA algorithm. Thus, PA, PA-I, and PA-II maintain the ordering
of the thresholds after every trial.

V. MISTAKE BOUND ANALYSIS

We find the mistake bounds for the proposed PA algorithms
under both general and ideal cases. In the ideal case, there
exists an ordinal regression function such that for every
example, the predicted label lies in the label interval. Let lt

i
be the loss incurred by the algorithm due to i th threshold at

trial t . Let lt∗
i denote the loss suffered due to i th threshold

by the fixed predictor at trial t . The mistake bound of the PA
algorithm in general case is as follows.

Theorem 5 (Mistake Bound of PA in General Case): Let
(x1, y1

l , y1
r ) . . . (xT , yT

l , yT
r ) be the sequence of examples

to PA algorithm. Let c = mint∈[T ](yt
r − yt

l ) and R2 =
maxt∈[T ] 
xt
2. Let v = (u, b) be parameters of an arbitrary
predictor (u ∈ R

d , b ∈ R
K−1). Let D = (1+ R2(K − c− 1)),

then

T∑
t=1

K−1∑
i=1

(
lt
i

)2≤D2

⎛
⎝
v
 + 4(K − c−1)

√√√√ T∑
t=1

K−1∑
i=1

(
lt∗
i

)2⎞⎠
2

.

Proof: Let lt
i be the loss incurred by the algorithm due to

i th threshold at trial t . Let lt∗
i denote the loss suffered due to

i th threshold by the fixed predictor at trial t . We define �t as
�t = 
wt − u
2 − 
wt+1 − u
2 + 
θ t − b
2 − 
θ t+1 − b
2.
Using the fact that w0 = 0 and θ0 = 0, we get

T∑
i=1

�t = 
w0 − u
2 − 
wT+1 − u
2 + 
θ0 − b
2

−
θT+1 − b
2 ≤ 
u
2 + 
b
2. (3)

This gives an upper bound on the sum of �t . We see that
θ t+1

i = θ t
i , ∀i /∈ St

l ∪ St
r . Thus,

�t = −(at)2
xt
2 − 2at xt · (wt − u)−
∑
i∈St

l

(
ιt

i

)2
−
∑
i∈St

r

(
μt

i

)2 +∑
i∈St

l

2ιt
i

(
θ t

i − bi
)−∑

i∈St
r

2μt
i

(
θ t

i − bi
)
.

Note that θ t
i = wt .xt + lt

i − 1, ∀i ∈ St
l and θ t

i = 1+ wt .xt −
lt
i , ∀i ∈ St

r . Also, note that −bi ≥ 1− u.xt − lt∗
i ,∀i ∈ St

l and
bi ≥ 1+ u.xt − lt∗

i ,∀i ∈ St
r . Thus,

�t ≥−(at)2
xt
2−
∑
i∈St

l

(ιt
i )

2−
∑
i∈St

r

(μt
i )

2+
∑
i∈St

l

2ιt
i

(
lt
i − lt∗

i

)

+
∑
i∈St

r

2μt
i (l

t
i − lt∗

i ). (4)

Using PA updates and (4), we get

�t = −a2
t 
xt
2[1+ 
xt
2(∣∣St

l

∣∣+ ∣∣St
r

∣∣)]
+
∑

i∈St
l ∪St

r

(
lt
i

)2 +∑
i∈St

l

2
(
at
xt
2 − lt

i

)
lt∗
i

−
∑
i∈St

r

2
(
lt
i + at
xt
2)lt∗

i

≥
−(∑i∈St

l
l t
i −
∑

i∈St
r

lt
i

)2
xt
2
1+ 
xt
2{∣∣St

l

∣∣+ ∣∣St
r

∣∣} +
∑

i∈St
l ∪St

r

lt
i

[
lt
i − 2lt∗

i

]

−
2
xt
2

(∑
i∈St

l ∪St
r

lt
i

∑
j∈St

l∪St
r

lt∗
j

)
1+ 
xt
2{∣∣St

l

∣∣+ ∣∣St
r

∣∣}
≥ −

2
(
1+
xt
2{∣∣St

l

∣∣+∣∣St
r

∣∣+1
})∑

i∈St
l ∪St

r
lt
i

∑
j∈St

l∪St
r

lt∗
j

1+ 
xt
2{|St
l | + |St

r |
}

+
∑

i∈St
l ∪St

r

(
lt
i

)2
1+ R2(K − c − 1)

≥
∑

i∈St
l ∪St

r

(
lt
i

)2
D

− 4
∑

i∈St
l ∪St

r

lt
i

∑
j∈St

l∪St
r

lt∗
j
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where D = 1+R2(K−c−1). Here, we used
∑

i∈St
l ∪St

r
lt
i l t∗

i ≤
(
∑

i∈St
l ∪St

r
lt
i

∑
j∈St

l∪St
r

lt∗
j ) and (

∑
i∈St

l
l t
i −

∑
i∈St

r
lt
i )

2 ≤
(|St

l | + |St
r |)
∑

i∈St
l ∪St

r
(lt

i )
2. Now, using lt

i = 0 ∀i /∈ St
l ∪ St

r

and
∑

i∈St
l ∪St

r
lt
i ≤ (|St

l | + |St
r |)(
∑

i∈St
l ∪St

r
(lt

i )
2)1/2, we get

�t ≥
∑K−1

i=1 (lt
i )

2

D
− 4(K − c − 1)

√√√√K−1∑
i=1

(lt
i )

2

√√√√K−1∑
i=1

(lt∗
i )2.

Comparing the upper and lower bounds on
∑T

t=1 �t , we get
T∑

t=1

K−1∑
i=1

(
lt
i

)2

≤ D

⎛
⎝
v
2 + 4K1

T∑
t=1

√√√√K−1∑
i=1

(
lt
i

)2
√√√√K−1∑

i=1

(
lt∗
i

)2⎞⎠
where K1 = K − c − 1. Using Cauchy–Schwarz
inequality, we get

∑T
t=1(

∑K−1
i=1 (lt

i )
2)1/2(

∑K−1
i=1 (lt∗

i )2)1/2 ≤
LT UT where LT = (

∑T
t=1
∑K−1

i=1 (lt
i )

2)1/2 and UT =
(
∑T

t=1
∑K−1

i=1 (lt∗
i )2)1/2. Thus, we get L2

T ≤ D(
v
2 +
4K1 LT UT ). The upper bound on LT is obtained by the
largest root of the polynomial L2

T − 4K1 DLT UT − D
v
2,
which is 2K1 DUT + D(4K 2

1 U2
T + 
v
2)1/2. Using the fact

that (a + b)1/2 ≤ √a +√b, we get LT ≤ D
v
 + 4K1 DUT ,
which means

T∑
t=1

K−1∑
i=1

(
lt
i

)2 ≤ D2

⎛
⎝
v
 + 4K1

√√√√ T∑
t=1

K−1∑
i=1

(
lt∗
i

)2⎞⎠
2

.

We know that
∑K−1

i=1 (li )
2 is an upper bound on the MAE.

Thus,
∑T

t=1
∑K−1

i=1 (lt
i )

2 is an upper bound on the number of
mistakes in T trials. Thus,

∑T
t=1 LMAE

I (wt · xt , θ t , yt
l , yt

r ) ≤
D2(
v
 + 4K1(

∑T
t=1
∑K−1

i=1 (lt∗
i )2)1/2)2. Note that a similar

bound is achieved when c = 0 [5]. Now, we will consider the
ideal case.

Corollary 6 (Mistake Bound of PA in Ideal Case): Let
(x1, y1

l , y1
r ) . . . (xT , yT

l , yT
r ) be the sequence of examples pre-

sented to PA algorithm. Let v∗ = (u∗, b∗) (u∗ ∈ R
d and b∗ ∈

R
K−1) be subject to u∗ · xt − b∗i ≥ 1,∀i ∈ [yt

l − 1],∀t ∈ [T ]
and u∗ · xt − b∗i ≤ −1,∀i ∈ {yt

r , . . . , K − 1},∀t ∈ [T ]. Then,
T∑

t=1

(lt
i )

2 ≤ 
v∗
2
(

1+ R2(K − c− 1)
)

where c = mint∈[T ](yt
r − yt

l ) and R2 = maxt∈[T ] 
xt
2.
The proof of above can be easily seen by using the bound

in Theorem 5 and keeping lt∗
i = 0,∀t ∈ [T ],∀i ∈ [K − 1].

Now, we present the mistake bound for PA-I algorithm.
Theorem 7 (Mistake Bound of PA-I in General Case): Let

(x1, y1
l , y1

r ) . . . (xT , yT
l , yT

r ) be the sequence of examples pre-
sented to PA-I algorithm. Let c = mint∈[T ](yt

r − yt
l ) and

R2 = maxt∈[T ] 
xt
2. Let v = (u, b) be the parameters of
an arbitrary predictor (u ∈ R

d and b ∈ R
K−1). Then,

T∑
t=1

K−1∑
i=1

lt
i ≤

T∑
t=1

K−1∑
i=1

lt∗
i +
√

DT 
v


where D = 1+ 2R2(K − c − 1)2.
Proof: We use the primal-dual framework proposed in

[21], [22] to get the bound. In that framework, online learning

is posed as a task of incrementally increasing the dual objective
function. The dual optimization problem (D) of the regularized
risk under LIMC

I (considering all T examples) is

max
α1...αT

T∑
t=1

⎛
⎝ yt

l∑
j=1

ιt
j +

K−1∑
j=yi

r

μt
j

⎞
⎠

−1

2

∥∥∥∥∥∥
T∑

t=1

⎛
⎝ yt

l∑
j=1

ιt
j −

K−1∑
j=yi

r

μt
j

⎞
⎠ xt

∥∥∥∥∥∥
2

−1

2

K−1∑
j=1

(
T∑

t=1

(
μt

j I{ j≥yt
r } − ιt

j I{ j≤yt
l−1}
))2

s.t. 0 ≤ ιt
j ≤ C, t ∈ [T ], j = 1 . . . yt

l − 1

0 ≤ μt
j ≤ C, t ∈ [T ], j = yt

r . . . K − 1

where αt = [ιt
1 . . . ιyt

l−1 0 . . . 0 μyt
r

. . . μt
K−1] ∈ R

K−1.

Let � = (α1, . . . ,αT ). PA-I can be viewed as finding a
sequence of �1, . . . , �T+1 where �t+1 = (α1

t+1, . . . ,α
T
t+1)

is the maximizer of the following problem:
max

�
D(�) s.t. αs = 0 ∀s > t .

PA-I updates are as follows. αi
t+1 = αi

t , ∀i = t . αt
t+1 =[ιt

1 . . . ιt
yt

l−1
0 . . . 0 μt

yt
r

. . . μt
K−1] where ιt

i = min(C, lt
i−

at
xt
2), i = 1 . . . yt
l −1 and μt

i = min(C, lt
i +at
xt
2), i =

yt
r . . . K − 1. Increment in D after trial t is

D(�t+1)−D(�t )

= −1

2

⎛
⎝yt

l−1∑
i=1

ιt
i −

K−1∑
i=yt

r

μt
i

⎞
⎠

2


xt
2 − 1

2

yt
l−1∑
i=1

(
ιt

i

)2

− 1

2

K−1∑
i=yt

r

(
μt

i

)2 + yt
l−1∑
i=1

ιt
i

(
1− wt · xt + θ t

i

)

+
K−1∑
i=yt

r

μt
i

(
1+ wt · xt − θ t

i

)
where θ t

i =
∑t−1

s=1(μ
s
i I{i≥ys

r } − ιs
i I{i≤ys

l −1}), i ∈ [K − 1] and

wt = ∑t−1
s=1 asxs . Note that ιt

i > 0, i ∈ St
l and μt

i > 0,
i ∈ St

r . Using at =∑i∈St
l
ιt

i −
∑

i∈St
r
μt

i , we get

D(�t+1)−D(�t )

=
∑
i∈St

l

ιt
i

(
lt
i − at
xt
2 − ιt

i

2

)

+
∑
i∈St

r

μt
i

(
lt
i + at
xt
2 − μt

i

2

)

+1

2
at
xt
2

⎛
⎝∑

i∈St
l

ιt
i −
∑
i∈St

r

μt
i

⎞
⎠

≥ C

⎡
⎣∑

i∈St
l

γ
(
lt
i − at
xt
2)+∑

i∈St
r

γ
(
lt
i + at
xt
2)

⎤
⎦ (5)

where γ (z) = (1/C)(min(z, C)(z − (1/2 min(z, C))) [22].
Note that D(�0) = 0. Summing (5) from t = 1 to T ,
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we get

D(�T+1)

=
T∑

t=1

(
D(�t+1)−D(�t )

)

≥ C
T∑

t=1

⎛
⎝∑

i∈St
l

γ
(
lt
i − at
xt
2)+∑

i∈St
r

γ
(
lt
i + at
xt
2)

⎞
⎠

≥ CT γ

⎛
⎝1

T

T∑
t=1

⎛
⎝∑

i∈St
l

(
lt
i−at
xt
2)+∑

i∈St
r

(
lt
i +at
xt
2)

⎞
⎠
⎞
⎠

where we used the fact that γ (.) is a convex function [22].
From the weak duality, we get the following:

D(�T+1) ≤ 1

2

(

w
2 + 
θ
2

)
+ C

T∑
t=1

⎛
⎝yt

l−1∑
i=1

lt∗
i +

K−1∑
i=yt

r

l t∗
i

⎞
⎠ .

Comparing the upper and lower bounds on D(�T+1), we get

1

T

T∑
t=1

⎛
⎝∑

i∈St
l

(
lt
i − at
xt
2)+∑

i∈St
r

(
lt
i + at
xt
2)

⎞
⎠

≤ γ−1

⎛
⎝ 1

2T C

(

w
2 + 
θ
2

)
+ 1

T

T∑
t=1

⎛
⎝yt

l−1∑
i=1

lt∗
i +

K−1∑
i=yt

r

l t∗
i

⎞
⎠
⎞
⎠ .

We note that

1

T

T∑
t=1

⎛
⎝∑

i∈St
l

(
lt
i − at
xt
2)+∑

i∈St
r

(
lt
i + at
xt
2)

⎞
⎠

≥ 1

T

T∑
t=1

∑
i∈St

l ∪St
r

lt
i −

1

T

T∑
t=1

at
xt
2(∣∣St
l

∣∣+ ∣∣St
r

∣∣)

≥ 1

T

T∑
t=1

K−1∑
i=1

lt
i − C R2(K − c − 1)2 (6)

where we used the fact that 
xt
2 ≤ R2, ∀t ∈ [T ], |St
l | +|St

r | ≤ K −c−1, ∀t ∈ [T ], and at ≤ C(K −c−1), ∀t ∈ [T ].
From [22], we know that γ−1(z) ≤ z + (1/2)C . Thus,

γ−1

⎛
⎝ 1

2CT

(

w
2 + 
θ
2

)
+ 1

T

T∑
t=1

⎛
⎝yt

l−1∑
i=1

lt∗
i +

K−1∑
i=yt

r

l t∗
i

⎞
⎠
⎞
⎠

≤ 1

2CT

(

w
2+
θ
2

)
+ 1

T

T∑
t=1

⎛
⎝yt

l−1∑
i=1

lt∗
i +

K−1∑
i=yt

r

l t∗
i

⎞
⎠+C

2
.

(7)

Using (6) and (7), we get
T∑

t=1

K−1∑
i=1

[
lt
i − lt∗

i

] ≤ 1

2C

v
2 + CT

[
1

2
+ R2(K − c − 1)2

]
.

We get least upper bound by putting C = (
v
)/((T (1+ 2R2

(K − c − 1)2))1/2) as follows:
T∑

t=1

K−1∑
i=1

lt
i ≤

T∑
t=1

K−1∑
i=1

lt∗
i +

√
T (1+ 2R2(K − c − 1)2)
v
.

Corollary 8 (Mistake Bound of PA-I in Ideal Case): Let
(x1, y1

l , y1
r ) . . . (xT , yT

l , yT
r ) be the sequence of examples

presented to PA-I. Let c = mint∈[T ](yt
r − yt

l ) and R2 =
maxt∈[T ] 
xt
2. Let v∗ = (u∗, b∗) (u∗ ∈ R

d and b∗ ∈ R
K−1)

be such that u∗.xt − b∗i ≥ 1,∀i ∈ [yt
l − 1],∀t ∈ [T ] and

u∗.xt − b∗i ≤ −1,∀i ∈ {yt
r , . . . , K − 1},∀t ∈ [T ]. Let

D = 1+ 2R2(K − c − 1)2, then,
T∑

t=1

K−1∑
i=1

lt
i ≤
√

DT 
v
.

The proof of above Corollary is immediate from Theorem 8
by putting lt∗

i = 0, ∀t ∈ [T ], ∀i ∈ [K − 1].
Theorem 9 (Mistake Bound of PA-II in General Case):
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By simplifying further, we get
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Fig. 1. Comparison results of PA, PA-I, and PA-II with PRIL, MCP, and PRank. The performance measure used is average MAE.
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Let D = 1+ (1/2C)+ R2(K − c− 1), then by comparing the
lower and upper bounds on

∑T
t=1 �t , we get
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We know that lt
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r . Thus,
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Corollary 10 (Mistake Bound of PA-II in Ideal Case): Let
(x1, y1

l , y1
r ), . . . (xT , yT

l , yT
r ) be the sequence of examples. Let

v∗ = (u∗, b∗) (u∗ ∈ R
d , b∗ ∈ R

K−1) be the parameters of an
ideal predictor such that u∗.xt−b∗i ≥ 1,∀i ∈ [yt

l−1],∀t ∈ [T ]
and u∗ · xt − b∗i ≤ −1,∀i ∈ {yt

r , . . . , K − 1},∀t ∈ [T ]. Let
c = mint∈[T ](yt

r − yt
l ) and R2 = maxt∈[T ] 
xt
2. Then, for

PA-II updates, we get the following bound:
T∑

t=1

K−1∑
i=1

(lt
i )

2 ≤
(

1+ 1

2C
+ R2(K − c − 1)

)

v
2.

VI. EXPERIMENTS

In this section, we describe the experiments performed.

A. Data Sets Used

We perform experiments on the following four data sets.
The features in each of the data set are normalized to zero
mean and unit variance coordinate wise.

1) California: This data set has 20 460 instances with nine
features [17]. The target variable “median house value”
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ranges over 14999–500001. We create five intervals,
i.e., (1–100000), (100001–200000), (200001–300000),
(300001–400000), and (400001–500001).

2) Abalone: This data set [7] has 4177 instances with
eight attributes. The target attribute varies from 1 to 29.
We divide it into four intervals as 1–7, 8–9, 10–12, and
13–29.

3) Parkinson Telemonitoring: This data set [7] contains
5875 instances with 22 features. The target variable
“total_UPDRS” for varies from 7 to 54.992. We divide
it into four intervals, i.e., 7–17, 18–27, 28–37, and
38–54.992.

4) MSLR: This data set comprises query-url pairs along
with the relevance label obtained from Microsoft
Bing [19]. We experiment on MSLR-WEB10K data in
which we took one of the available fivefolds. There are
723 412 instances, 136 features, and 5 classes.

B. Generating Interval Labels

We choose m% examples from the training set randomly.
Then, for each of the example, we randomly assign one of
the following interval: [y − 1, y], [y − 1, y + 1], [y, y + 1],
[y − 2, y], [y, y + 2], [y − 2, y + 2] where y is the actual
label. We consider m = 50% and 75%.

C. Comparison Results With Other Approaches

We compare the performance of the proposed PA algorithms
with two approaches. 1) PRank [5], which is an online ranking
algorithm using the actual labels; 2) PRIL in [15], which
is perceptron-based approach for ordinal regression using
interval labels; and 3) multi-class perceptron (MCP) [6] (uses
more parameters and ignores the class labels orderings).

For PRank and MCP, we use only the exact labels for
training. For the proposed PA algorithms and PRIL, we use
interval labeled data during training. We took three different
training sets for the proposed PA algorithms and PRIL. First,
with 50% interval labels, second with 75% interval labels
and third with actual (exact) labels. To predict the label, we
use the ranking function descibed in (1).

We used the exact labels to compute the average LMAE
(after every trial) for all the algorithms. We repeat the process
100 times and average the instantaneous losses across the
100 runs. Fig. 1 shows the comparison results.

1) For California and Abalone data sets, PA, PA-I, and
PA-II trained using exact labels as well as using interval
labels outperform the other algorithms.

2) For Parkinson’s, PA, PA-I, and PA-II outperform other
approaches for exact label case and 50% interval label
case. For 75% interval labels, PA-I and PA-II outperform
PRIL, PRank, and MCP, while PA performs comparably
to PRank and better than PRIL and MCP.

3) For MSLR, PA-I outperforms PRIL, PRank, and MCP
in all the cases. Also, PA and PA-II always outper-
form MCP. PA-II performs comparably to PRIL and
PRank.

The major difference between PRIL and the proposed PA
algorithms is that PRIL uses a constant step size. On the other

Fig. 2. Average MAE decreases by increasing the fraction of interval labels.
MAE is computed using partial labels.

hand, PA algorithms choose an appropriate step size to find the
new parameters in every trial. In each of the PA variants, the
step size is determined by solving an optimization problem.
This makes PA algorithms to have better step size selection.
Thus, we see that the proposed PA algorithms perform better
or comparable to PRIL, PRank, and MCP.

Among the PA variants, PA takes the most aggressive step
size to ensure that the loss LIMC on the current example
becomes zero. Because of this greedy nature, for some data
sets, we see that PA does not perform well compared to other
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approaches. On the other hand, PA-I allows small errors and
controls the greediness by finding the new parameters closest
to the old one while minimizing the error. Due to which PA-I
outperforms PA, PA-II also allows some errors but minimizes
the square of the error. In general, minimizing the error is
better than minimizing the square of the error. Thus, PA-II
performs better than PA, and PA-I performs better than both
PA and PA-II.

D. Varying the Fraction of Interval Labels

We vary the fraction of partial labels (50% and 75%).
We compute the average MAE after every trial with the same
interval label used for updating the hypothesis. We repeat the
process 100 times and average the instantaneous losses across
the 100 runs. The results are shown in Fig. 2. We make the
following observations.

1) We see that for all the data sets, the average MAE
decreases faster compared to T .

2) Also, the average MAE decreases with the increase in
the fraction of interval labels. This happens because the
allowed range for predicted rank is more when we use
interval labels for computing MAE.

3) For California, Abalone, and Parkinsons data sets, the
proposed algorithms such as PA, PA-I, and PA-II achieve
smaller values of average MAE compared to PRIL.
For MSLR data set, PA-I outperforms PRIL, whereas
PA-II performs comparably to PRIL. Thus, overall,
PA approaches perform better than PRIL.

VII. CONCLUSION

We proposed online PA algorithms for ordinal regression,
which can also be used when we have interval labels. We pre-
sented three algorithms, namely, PA, PA-I, and PA-II. We find
the exact solution of the optimization problem at every trial.
Our method is based on finding the support classes at each
instant using the SCAs. These sets describe the thresholds to
be updated at a trial. Advantage of our method is that the
ordering of the thresholds is maintained implicitly. We have
also given mistake bounds on all the three variants of the
algorithm. Practical experiments show that our proposed algo-
rithms perform better than the other algorithms even when we
train our algorithms using interval labels.
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